Pythagorean ratios in arithmetic progression, part i. three Pythagorean ratios

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pythagorean Triples

Let n be a number. We say that n is square if and only if: (Def. 3) There exists m such that n = m2. Let us note that every number which is square is also natural. Let n be a natural number. Note that n2 is square. Let us observe that there exists a natural number which is even and square. Let us observe that there exists a natural number which is odd and square. Let us mention that there exist...

متن کامل

The Pythagorean Theorem: I. The finite case.

The Pythagorean Theorem and variants of it are studied. The variations evolve to a formulation in terms of noncommutative, conditional expectations on von Neumann algebras that displays the theorem as the basic result of noncommutative, metric, Euclidean Geometry. The emphasis in the present article is finite dimensionality, both "discrete" and "continuous."

متن کامل

Pythagorean Triples

The name comes from elementary geometry: if a right triangle has leg lengths x and y and hypotenuse length z, then x + y = z. Of course here x, y, z are positive real numbers. For most integer values of x and y, the integer x + y will not be a perfect square, so the positive real number √ x2 + y2 will be irrational: e.g. x = y = 1 =⇒ z = √ 2. However, a few integer solutions to x + y = z are fa...

متن کامل

Pythagorean Descent

where B(v, w) = 12(Q(v + w) − Q(v) − Q(w)) is the bilinear form associated to Q. The transformation sw is linear, fixes the plane w⊥ = {v : v ⊥ w}, and acts by negation on the line through w. These properties characterize sw. We will use reflections associated to the four vectors e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), and e1 + e2 + e3 = (1, 1, 1). The vectors e1, e2, and e3 form an ort...

متن کامل

Pythagorean powers of hypercubes

For n ∈ N consider the n-dimensional hypercube as equal to the vector space F2 , where F2 is the field of size two. Endow F2 with the Hamming metric, i.e., with the metric induced by the `1 norm when one identifies F2 with {0, 1} ⊆ R. Denote by `2 (F2 ) the n-fold Pythagorean product of F2 , i.e., the space of all x = (x1, . . . , xn) ∈ ∏n j=1 F n 2 , equipped with the metric ∀x, y ∈ n ∏ j=1 F2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 1993

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089500009988